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The self-organization of signaling has been a topic of interest in evolutionary theory, due to its
ubiquitous presence in nature. Here we show that the entangled evolution of signaling strategies
and interaction structure may constitute a key mechanism for the evolution and sustainability of
informative signaling. To this end, we propose a novel stochastic population dynamics model —
described as a reduced Markov process — which allows us to compute the stationary distribution
of signaling strategies in adaptive networks. We show that signal-based partner choice may lead
to the evolution of informative signaling, both in the absence and presence of partial conflict, here
associated with individuals sometimes benefiting from different actions when interacting. Depending
on the level of conflict, signaling can either dominate the population dynamics or arise from a
non-trivial interplay with deceivers. These results are shown to remain valid for a wide range of
parameters and diverse individual motivations underpinning the time-evolution of the network.
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I. INTRODUCTION

Information transfer is a ubiquitous phenomenon, oc-
curring at all levels of complexity, from micro-organisms
to humans [1–3]. The fundamental process that supports
it is what is usually called signaling: the process through
which signal usage carries information about the state of
the world. However, the occurrence of signaling systems
is nuanced and far from trivial. What is their nature?
How do conventions concerning the use of the signals
emerge? Here we tackle the evolution of signaling, focus-
ing particularly on the role of time-evolving interaction
structures.

It can be tempting to look at signaling systems as a set
of static conventions or agreements, in which it is implic-
itly defined which signals make sense and what is their
exact meaning. However, a signaling system should not
demand such a formal understanding, since that would
require a preexisting language from its users. Focusing
on the interactive nature of signaling, a formal approach
was initiated by Lewis [4] and borrowed from what at the
time was considered the economic field of game theory [5]
to create the signaling game. Signaling games are charac-
terized by the existence of two agents: one that has access
to private information about the state of the world and
signals contingent on it; and another with enough agency
to act based on the signals received [4, 6]. On this basis,
instead of signals having any innate meaning, they may
earn one from usage.

This approach was then extended by the inclusion of
evolutionary population dynamics [6–14], inspired by bi-
ology. These tools allowed advances in predicting and un-
derstanding emergent behavior in evolving populations
of interacting agents. In what concerns signaling, the
results obtained here seem to depend critically on the
agents’ interests. On one hand, if agents in a population
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benefit from the same actions, they are said to have com-
mon interests, and informative signaling is consistently
predicted to emerge [15–19]. On the other hand, agents
might be in the presence of partial conflict if they bene-
fit from different actions under part of the states of the
world.

Conflict of this form is as much present in real com-
plex systems as signaling itself, some of the most famous
examples being nestling feeding, mating quality, and job-
market signaling (see these and more examples in [20]
for nature, and [21] for economics). This is not triv-
ially explained under evolutionary theory, where several
signaling-sustaining features have been proposed to be
present, such as costly signals [22–29], kinship [26, 30–
32], partial information transfer [31–33], and reciprocity
[34]. Most of the literature focuses on the first, despite
the significant critiques regarding the lack of incidence of
the required high costs on natural systems [35–38].

Contrary to this, time-evolving population structure
has been almost systematically neglected in past signal-
ing models where populations are commonly considered
static and well-mixed (for an exception under determin-
istic dynamics, see [39]). This comes off as surprising due
to the fact that adaptive networks have been repeatedly
pointed out as pervasive over all sorts of complex sys-
tems [40–44]. Because of this, signaling is a phenomenon
whose intricate dynamics may not be completely dis-
closed, especially relating the impact of time-evolving
population structure on its emergence.

We will be resorting to a set of analytical tools, based
on a game-theoretic approach. We start by proposing a
signaling game with a novel unifying payoff framework,
which will allow the inclusion of partial conflict in the
extensively explored Lewis signaling game. We will use
stochastic methods on finite populations, an approach
commonly overlooked to deterministic models and their
stability concepts [7, 9, 10], but already shown to reveal
other facets of emerging phenomena [45, 46]. Considering
a population of agents who interact with each other under
the basis of the signaling game, we will use as a stochas-
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tic update rule the pairwise comparison [11, 47], inspired
by the Fermi function and statistical physics. The effect
of mutations is taken into consideration, but because of
the large size of the state space of the population, we
will further use the small mutation limit [12]. By com-
puting the transitions between monomorphic states and
consequently, the stationary distribution of the popula-
tion over them [12, 46, 48–51], we will achieve the values
of signaling prevalence. The effect of adaptive interac-
tion networks in considered by using the active linking
framework [39, 50, 52–54]. We will develop a partner
choice model, which will handily restrain the dynamical
parameters of the network. This will allow us to focus
on signal-based partner choice norms and briefly explore
the potential of outcome-based ones.

Using this framework, we propose to answer the fol-
lowing questions:

• Does signaling emerge under partial conflict?

• What are the main mechanisms affecting the emer-
gence of signaling?

• Can time-evolving population structure generated
by partner choice enhance the emergence of signal-
ing?

• Can partner choice emerge from natural selection?

II. RELATED WORK

Game theory formalizes interactions between rational
agents, by characterizing the complete set of possible ac-
tions that can be performed by them, and how those di-
rectly affect the outcomes each of them face. Differently,
evolutionary game theory (EGT) provides essential tools
for the comprehension of phenomena in complex systems,
without requiring any assumption about the rational fac-
ulties of the agents present in them. Under its lens, we
may study how behaviors such as altruism, cooperation,
and signaling, may emerge from natural selection.

An evolutionary model should be able to embody the
characteristics needed to observe the process of behav-
ioral selection in a population: the replication of behav-
ior according to the success it represents to its actors,
concurrent with the latent possibility of exploring new
behaviors. Having this in mind, several models can used.

The replicator equation [7], and its mutation-extended
version, the replicator-mutator equation [8], have been
extensively used, both due to their tractability and the
simplicity of the analysis of equilibria through concepts
such as evolutionarily stable strategy (ESS) [9, 10]. These
models have showed that signaling should be expected
to emerge under pure common interest, except for some
particularly challenging cases [15–19].

Infinite population models may not be adequate for
many reasons, between them the fact they do not take
into consideration the stochasticity to which most popu-
lations are exposed. On these grounds, finite population

dynamics can reveal other facets of emerging phenom-
ena [45]. These methods have been used considerably
less to approach signaling and its origins. Their use has
relied either on pure common interests under the Lewis
SG [17, 18], or rather specific accounts of conflict, such
as a version of the battle of sexes [46] and the Sir Philip
Sidney game [55].

Under other models, we can see the impact of individ-
ual learning in signaling being studied. Agents may have
the ability to learn their preferred actions through rein-
forcement processes [56, 57], neural networks [58, 59], or
update of beliefs [1]. Even though these may hold inter-
esting results, they are not contemplated in the approach
we intend on doing here.

We know that signaling occurs in complex systems un-
der the presence of partial conflict – see overviews of this
topic in the natural world [20] and in human affairs [21].
However, EGT shows that their emergence is not as di-
rect as it would be expected, leaving an open question
out of their presence in those systems.

To overcome this complication, a large share of the
models on signaling under conflicting interests rely on
costly signals. One of the main motivations for this sort
of mechanisms is Zahavi’s handicap principle [22]. This
principle says that for signals between animals to carry
information, agents should incur in a cost when sending
them. These costs could surge from factors such as en-
ergy spent or increased predation risk and they should
translate into signals being sent only by senders to which
they are affordable. After the introduction of this mecha-
nism under the signaling game [23], this has been studied
to a great extent both in the fields of biology [24–26], and
economics [27–29]. However, their usage has been subject
to some empirical criticism, as most signals observed in
real systems are not costly enough to explain the results
obtained [35–38].

Kinship may also be seen as a potential explanation for
signaling under conflict [26, 31, 32]. When we consider
genes as the evolutionary units and that specimens share
a relevant part of them with their kin, their conflicting
interests may somehow turn into common ones [30]. We
should take into consideration that most models overlap
that mechanism with costly signals, and by excluding
those we may see signaling systems succumb to deceiving
[26]. Besides this, inclusive fitness has been subject to
criticisms from the start due to the rigid assumptions it
requires, which refrain it from being general enough [60].

Alternative approaches to signaling study how partial
information transfer can occur. Individual agents, or
populations in equilibrium, may spend a fraction of time
signaling and acting accordingly and another fraction not
doing it. These equilibria are generally less restrictive
than the ones that correspond to optimal information
transfer [31, 33]. Similar conclusions are drawn for equi-
libria where at least one state is properly signaled, while
others are pooled, which can happen if the number of rel-
evant states is higher than 2 [32]. Even though these are
optimistic scenarios when compared to the difficulty of
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expecting the emergence of perfect information transfer,
non-null costs still seem to be essential in order to see
meaning emerging on evolutionary populations [31–33].

On the other hand, agents having repeated interac-
tions between them is shown to be a feature enough to
promote signaling alone, even under cheap talk [34]. As
agents interact contingent on the other’s honesty, the
short-term benefit of lying is surpassed by the future ben-
efits of maintaining a good relation with their peers. This
adapted form of direct reciprocity refreshingly opens the
way for new mechanisms to be explored outside costly
signaling.

Under all these models, population structure is com-
pletely ignored. This feature was repeatedly shown to
promote the emergence of cooperative behavior [50, 53,
54, 61–64]. It has also raised distinct implications on sig-
naling emergence under common interests: spatial struc-
ture introduces the possibility of regional meaning emer-
gence [65], while small-world networks tend to facilitate
the achievement of universal signaling systems in ambi-
tious scenarios not covered by well-mixed models [66].

However, due to the pervasiveness of conflict, we are
interested in understanding the impact that population
structure has on these settings where signaling emergence
is not guaranteed. Adaptive networks have been thor-
oughly explored in the past decades due to their rele-
vance across all sorts of interactive complex systems [40–
44]. By considering populations to consist of adaptive
networks of interacting agents, it is shown that signaling
systems may be resistant to the fixation of deceivers if the
links formed between them have high death rates [39].
This approach used a truncated version of the signal-
ing game, which may provide less restrictive conditions
of signaling emergence [19]. The stochastic character of
the population was additionally ignored, by using deter-
ministic models of infinite populations, which may hold
different outcomes for emerging behavior [45, 46]. By
deliberately discarding these choices when studying the
role of time-evolving population structure, valuable new
insights about signaling emergence may be revealed.

III. MODEL

We propose the game defined by its extensive form
in Fig. 1. This formulation introduces a novel payoff
framework with two parameters [67], straightforwardly
described by the matrix present in equation 1, where
payoffs – first the receiver’s and second the sender’s –
are represented for each state of the world and action
performed. This representation ignores the used signals
given they have no direct effect on the payoffs received.

S0 S1

A0

A1

[
(a, a) (0, b)
(0, 0) (a, a− b)

]
(1)

Parameter a is the reward of successful interactions be-
tween the two agents, inspired by the original Lewis game

[4]; and parameter b allows the inclusion of gaugeable
partial conflict. Under b = 0, this game generates the
Lewis signaling game [4], and under b = a a version of
the canonical signaling game with partially conflicting
interests defined in [33, 39].

N
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FIG. 1. Signaling game with the proposed unifying payoff
framework in extensive form. The payoffs are first the re-
ceiver’s, and second the sender’s. The first move is a move by
nature (N). It chooses between states of the world S0 and S1

with probabilities p and 1− p respectively. Depending on the
chosen state, to which the sender (S) has direct access, this
agent chooses to send either signal M0 or M1. The receiver
(R) receives the chosen signal and, contingent on it, performs
one of the acts A0 or A1, without being directly aware of the
state of the world. Hence the dashed lines, connecting nodes
of equal perception by the receiver.

Since each agent has to choose between a limited
amount of signals to send and acts to perform, we can
define for each agent a correspondence between what
she knows and the probability of choosing any of her
prospects. This conditional decision process is what we
call the agent’s strategy. We will only take into account
pure strategies, under which the decision process becomes
deterministic. Those are fully characterized under our
symmetric 2 state, 2 signal, 2 act game by four binary
variables: {signal sent when state of the world is S0; sig-
nal sent when state of the world is S1; act performed
when signal received is M0; act performed when signal
received is M1}. For convenience, let us assume that
the signals sent and acts performed are represented by a
Boolean variable given by their index. A strategy is then
represented by a 4-bits tuple, which can be translated
to their decimal numeral (the strategy index). Signaling
systems (SS) are characterized by agents performing a
correspondence between the states of the world and their
matching acts through informative signaling, which in
this case are strategies 5:{0, 1, 0, 1} and 10:{1, 0, 1, 0}. In
relation to these, deceiving would correspond to acting
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accordingly, but signaling uninformatively in their own
interest, strategies 1:{0, 0, 0, 1} and 14:{1, 1, 1, 0}.

In a population of Z agents, each of them will have en-
counters with all the other agents according to the inter-
action defined in Fig. 1. We will consider a symmetrized
version [68] of that game, where agents interact half the
times as senders and the other half as receivers. One–
population and two–population models of the Lewis sig-
naling game have been shown to hold comparable results
[15, 19]. The average payoff received by an agent with
strategy A when interacting with an agent with strategy
B is the following:

πAB = p · πA→B(S0) + πA←B(S0)

2
+

+ (1− p) · πA→B(S1) + πA←B(S1)

2
(2)

where πA→B(Si) [πA←B(Si)] is the payoff received by an
agent using strategy A, when interacting as a sender [re-
ceiver] with an agent using strategy B under state of the
world Si. The payoffs are defined by the simple matrix
from eq. 1, and in reference to the game represented in
its extensive form in Fig. 1.

The evolutionary process starts with choosing ran-
domly one agent i in the population. With a probability
µ, this agent may undergo a mutation process, where she
changes her strategy equiprobably to any of the other 15.
With the complementary probability 1−µ, another agent
j is randomly chosen in the population and they undergo
a pairwise comparison [11, 47], where the Fermi function
is used as a stochastic update rule (eq. 3)

Pi(s(i)→ s(j)) =
1

1 + e−β(Πj−Πi)
(3)

It defines the probability of the first agent i changing
from her current strategy s(i) into the one the second
agent j is using s(j), based on their fitness Πi and Πj de-
fined later. The temperature β accounts for the intensity
of selection, which restrains the dispersion around the
option that maximizes the individual fitness of agent A.
Changing β allows to continuously gauge between neu-
tral drift (β → 0) and deterministic imitation dynamics
(β →∞).

We take into consideration the small mutation limit
(SML) [12] µ → 0. Under this, the population evolves
through successive pairwise comparisons to one of the

monomorphic states, i.e. a state where every agent uses
the same strategy. When a mutation occurs, the in-
truder either fixates on the previously settled strategy,
or it succumbs under it. For this reason, the population
will spend all of its time with a maximum of two strate-
gies present simultaneously. This allows one to describe
the population dynamics in terms of a reduced Markov
Chain with a size given by the number of possible strate-
gies (16 in this case) [12, 46, 48–50].

For this approximation to be accurate, it should be
confirmed that all the polymorphic states are indeed
transient in the non-approximate process [12], otherwise
the range of mutation probabilities for which the ob-
tained results hold could be constrainingly small [51].
Under the Lewis Signaling Game (b = 0, p = 0.5) all
non-monomorphic rest points have been shown to be un-
stable [15, 19]. In the case this does not hold under
non-null conflict levels (b > 0), the approximation could
be extended considering further configurations of interest
apart from the monomorphic states, that way achieving
more accurate results [51].

Let us consider that a maximum of two strategies are
present in a populations (A and B). The probabilities
of increasing/decreasing (+/−) by 1 the number k of
mutant strategies B in a population with Z−k strategies
A is

T±(k) =
k

Z

Z − k
Z

1

1 + e∓β(ΠB(k)−ΠA(k))
(4)

Fitness values ΠA and ΠB are associated with the average
payoff received. For instance, under the SML the fitness
of an individual using a strategy A is given by

ΠA(k) =
k

Z − 1
πAB +

Z − 1− k
Z − 1

πAA (5)

Following [69] and using the transition ratio λk =
T−(k)/T+(k), we compute the fixation probability ρA,B
of one mutant strategy B on a population using A as it is
done in eq. 6. This allows the construction of the tran-
sition matrix Mns×ns

(eq. 7), which defines the discrete-
time Markov Chain of the approximate process. All the
matrix elements are numbered from 0 to 15, correspond-
ing to the indexation of the strategy of that monomorphic
state.

ρA,B =

[
Z−1∑
l=0

(
l∏

k=1

λk

)]−1

(6)

M =


1− η(ρ0,1 + ...+ ρ0,ns−1) ηρ0,1 ... ηρ0,ns−1

ηρ1,0 1− η(ρ1,0 + ρ1,2 + ...+ ρ1,ns−1) ... ηρ1,ns−1

... ... ... ...

... ... ... 1− η(ρns−1,0 + ...+ ρns−1,ns−2)

 (7)



5

In the limit of the neutral drift (β = 0), the fixation
probability assumes the constant finite value ρ = 1/Z.
Due to the stochasticity of the system, this should be
valuable as a term of comparison for fixation probabil-
ities [11]. Under this setting, an evolutionarily robust
strategy (ERS) [13, 14] is one where all single mutants
have fixation probabilities below neutral fixation.

The normalized left eigenvector with eigenvalue 1 of
the matrix ϕ = ϕM provides the stationary distribution
of this discrete-time Markov chain [12]. This represents
the prevalence of each of the monomorphic states. Be-
cause under the SML, transient states are considered to
be rare and the time spent in them negligible, signaling
prevalence over the evolution is straightforwardly defined
as σ = ϕ5 + ϕ10.

We introduce the active linking (AL) framework [39,
50, 52–54], under which agents are considered the inter-
acting nodes of an adaptive network. Agents using strat-
egy A have a propensity to form new links αA, and their
links with strategy B have a life expectancy of τAB , the
inverse of their death rate γAB = τ−1

AB . Having this in
mind, the differential equation for the number of active
links XAB between agents using strategies A and B is

ẊAB = αAαB(NAB −XAB)− γABXAB (8)

where NAB is the total number of possible links be-
tween agents with those two strategies. This is NAB =
NANB for links between different strategies and NAA =
NA(NA − 1)/2 for links between the same strategies,
NA(NB) being the number of agents using strategy A(B)
in the population.

We consider the typical time of the strategic dynamics
to be much larger than the typical time of the linking dy-
namics τa � τs, leaving the network in in its equilibrium
topology at all times [39, 50]

Xeq
AB =

αAαB
αAαB + γAB

NAB = φeqABNAB (9)

Taking into consideration that only a fraction φeqAB of
the original interactions occur, the fitness should weigh
the payoffs received in those links with that fraction,
therefore turning eq. 5 into eq. 10. Comparing the
two, it is concluded that the effect of active linking
turns out to be a simple transformation of the strate-
gic payoffs received, where their effective values become
π′AB = πABφ

eq
AB .

Π′A(k) =
k

Z − 1
φeqABπAB +

Z − 1− k
Z − 1

φeqAAπAA (10)

It is virtually impossible to do a digestible analysis
of the full AL’s parameter space as the ones done in
[39, 53, 64]. This serves as motivation to develop the
concept of partner choice norm, under which the agents’

individual linking preferences are considered. These de-
fine the death rate values γAB under the adaptive in-
teraction network: if both agents are inclined to choose
each other, we attribute to that link a slow death rate
γS ; if none is inclined, we attribute to it a fast one γF ;
and if their preferences do not match, we attribute the
medium value γM = (γS + γF )/2. The values of γS and
γF are defined through parameter γF/S = 0.5± δ, where
δ represents the degree of discrimination upon which all
agents in a population will act when being inclined or
not inclined to link. All propensities are left as α = 1.

We focus on two forms of signal-based partner choice.
Under the Informative norm, agents choose the ones who
discriminate between states of the world using different
signals and therefore being informative. Under the Con-
vention norm, agents choose others who use the same
signals they use for each of the two states of the world.
These are just some of the numerous possibilities of ex-
isting linking dynamics, and they were chosen based on
their supposed logical simplicity [70–72]. They gener-
ally assume agents to be able to acknowledge the actions
performed by each other, the payoffs received after their
encounters, and from there infer the state of the world
after interacting as receivers. Additionally, agents are
supposed to have repeated interactions, so that they are
able to identify each other based on a memory of what
occurred in previous encounters.

Additionally, we briefly explore one outcome-based
norm [53, 73] relying on distinct information from the
encounters, as an alternative to the previous mecha-
nism. Under this, agents choose others if the payoff re-
ceived when interacting with them is at least equal to
the one received between signaling systems in that set-
ting a− (1− p) · b2 .

IV. RESULTS AND DISCUSSION

Using the developed evolutionary model, we start by
probing the effect of partner choice on signaling emer-
gence, followed by an explanation of the mechanisms un-
derlying the population dynamics. Then the evolution-
ary likelihood of partner choice will be assessed, by co-
evolving it with strategy selection.

In all the partner choice settings exhibited in Fig. 2(a),
increasing the conflict level b/a directly decreases the sig-
naling prevalence σ. Under the no norm scenario, signal-
ing prevalence holds values σ > 99% for conflict levels up
to b/a = 0.2, and signaling remains an evolutionarily ro-
bust strategy up until b/a = 0.4. As should be expected,
there is a plateau where the outcome observed under the
Lewis game holds. Beyond that plateau, signaling preva-
lence drops considerably, eventually attaining its mini-
mum value under b/a = 1, where signaling is nonetheless
still relevant σ ≈ 17%. This translates into the existence
of three signaling regimes, clear under the no norm sce-
nario: 1) Dominance, when signaling has a prevalence of
over 99% – seen under strong alignment of interests; 2)
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FIG. 2. Signaling prevalence under signal-based partner choice, changing (a) the level of conflict b/a, and (b) the degree of
discrimination. The different values of the conflict level b/a were obtained indirectly through the variation of parameter b. On
limit b/a = 0, this setting becomes the Lewis signaling game; on limit b/a = 1, the level of partial conflict becomes maximum.
The no norm setting is shown only as a term of comparison and was obtained imposing no discrimination (δ = 0) – hence the
dashed horizontal line in (b). Other parameters: (a) δ = 0.25; (b) b = 1; (a) and (b) Z = 50, β = 1, a = 1, p = 0.5.

Prevalence, when signaling is the most prevalent strategy
even though prevalence values are lower than 99% – seen
under weak alignment and weak partial conflict of inter-
ests; 3) and Relevance, when signaling is not the most
common strategy but it has a prevalence of over 5% –
seen under strong partial conflict of interests.

The two signal-based partner choice settings displayed
in Fig. 2 hold systematically better results regarding sig-
naling emergence, than the one without a norm. They
prolong the plateau coming from the Lewis game to
higher conflict levels than b/a = 0.5 and b/a = 0.3 un-
der the Informative and Convention norms respectively.
They guarantee signaling systems to remain ERS up un-
til conflict levels of b/a = 0.7, refraining the system from
getting past the prevalence regime under the maximum
values of partial conflict. Under the worst-case scenario
regarding partial conflict b/a = 1, increasing the degree
of discrimination δ directly increases the signaling preva-
lence σ up to values of 84.1% and 74.8% (δ = 0.5) under
the Informative and Convention norms (Fig. 2(b)).

We have additionally tested the effects of the outcome-
based partner choice, showing that the same conclusions
drawn here, hold under that setting. The values obtained
for signaling prevalence are comparable to those of the
Informative’s.

To understand these results, let us closely analyze the
evolutionary dynamics underlying the maximum conflict
scenario b/a = 1. In Fig. 3, we see signaling systems
being effectively invaded only by their respective decep-
tive strategies. Allied with the fact that all the other
strategies which signal like them (from the same group)
transition to them, SS gain a privileged position in the
overall dynamics – second most prevalent set of strate-
gies in Fig. 4(a). Their prevalence is only surpassed by
deceivers which fixate not only on SS but on other strate-
gies that signal like them. We may see this juncture as

7
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3

1 14
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I1 I2

FIG. 3. Graph of the resulting dynamics between the 16
monomorphic states under maximum partial conflict and no
norm. The transitions shown correspond to all which are (1)
more probable than the neutral fixation, and (2) at least 60%
as probable as the most frequent one coming out of the same
node. Criterion (2) was included with the aim of assessing
the role that every node had on the dynamics, therefore dif-
fering from other works where transitions are excluded based
on the absolute values of their probabilities leading to some
nodes being ignored [46]. The threshold of transition exclu-
sion (60%) was chosen to leave a small but enough number
of them coming out from each node. Some of the states are
packed for simplicity. All the transitions coming in or out
of those states were attributed to their pack. The number
of each state follows the numeration of the strategy present
in it. These are separated in groups according to the signals
sent by them, due to the focus given on signal-based partner
choice. Parameters: δ = 0, Z = 50, β = 1, a = b = 1, p = 0.5.
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signalers overthrowing informative strategies who do not
harvest the benefits of acting according to their signals;
and deceivers using the signals sent by informative strate-
gies to act in their self-benefit, but not providing them
with information about the world.

Transition
Fixation Probability (/ρZ)

No Norm Informative Convention
5→ 1 10→ 14 7.8 3.8 2.5
6→ 5 9→ 10 14.2 16.5 16.5
6→ 12 9→ 0 13.1 11.5 9.8
6→ 13 9→ 2 18.8 17.6 14.5
6→ 15 9→ 3 13.4 12.1 9.6
4→ 5 8→ 10 7.8 9.2 9.2
4→ 1 8→ 14 7.8 3.8 2.5
7→ 5 11→ 10 7.5 8.9 8.9
7→ 1 11→ 14 7.5 5.9 5.4
1→ 2 14→ 13 1.2 1.1 1.2
1→ 3 14→ 15 1.2 1.1 1.2

TABLE I. Fixation probabilities of the most relevant tran-
sitions between monomorphic states. The probabilities are
displayed for evolution under three different partner choice
settings: no norm (δ = 0), Informative norm and Conven-
tion norm. The number of each monomorphic state follows
the numeration of the present strategy (see strategy index in
Model). Strategies are colored according to the group from
Fig. 3 to which they belong: blue for I1 or I2 and brown for
UI. All transitions are present in Fig. 3. The probabilities
are normalized to the neutral fixation probability ρZ = 1/Z.
Parameters: δ = 0.25, Z = 50, β = 1, a = b = 1, p = 0.5.

In Table I, we have represented the probabilities of
some of the transitions on the graph from Fig. 3, where
we can observe a pattern. The two forms of signal-based
partner choice provoke (1) a decrease in the probabil-
ity of transitioning between different groups (I1/I2 and
UI), by weakening the links connecting them; and (2) an
increase in the transition probabilities inside the informa-
tive groups (I1 or I2), by reinforcing the links between
them. From Fig. 3, we see that the transitions contem-
plated in (1) are mainly from informative to uninforma-
tive states, therefore privileging informative strategies in
detriment of uninformative ones. The transitions where
(2) applies are from non-SS informative strategies to SS,
therefore strengthening the individual prevalence of sig-
naling. This is reflected in, Fig. 4 by the significant
decrease of the prevalence of deceiving strategies 1 and
14, and the opposite increase of SS prevalence 5 and 10,
when comparing both partner choice settings with the no
norm one.

The robustness of these conclusions is proved under
a large range of the parameter space, where the exis-
tence of other regimes of effectiveness (especially for β,
Z, and p) of those two norms has been shown and an-
alyzed. By additionally testing the results under evolu-
tionary settings where partner choice is only performed
by signalers [39], we state that the success of the two
signal-based norms requires global action, therefore sug-
gesting the mentioned dynamical effects to be crucial.

To assess the evolutionary origins of partner choice and
its co-emergence with signaling, the model is extended
subjecting this behavior to selection [50, 54]. Each agent
is defined by the combination of her linking and strate-
gic behavior. Due to the computational power involved
in a freer approach, we only include two types of part-
ner choice in each evolutionary setting: agents choosing
others according to a norm, and agents choosing others
unconditionally.

Evaluating the inclination of every possible pair of
types of agents, and following the already defined pro-
cedure to translate this into the death rate of their links,
we get the complex 32×32 death rate matrix. Combining
this with fixing every propensity values at 1, the linking
dynamics are completely set. Additionally considering
selection and mutations to happen to the 32 types, sets
the strategic dynamics.

In order for populations to adopt partner choice, and
therefore sustain structure under this model, they would
have to undergo an evolutionary cost. The cost originates
from populations being less connected, leading to agents
missing encounters and making a lower fitness. A differ-
ent formulation of the signaling game, where the payoffs
received are not constrained to positive values [52] could
be a way around this cost and would eventually show
different aspects of co-evolution.

Nonetheless, this cost may be justified, since undergo-
ing it must likewise represent a cost to the other agents
with whom they miss encounters [50, 55]. The inset panel
in Fig. 5 shows that this obstacle is overcome, and part-
ner choice emerges. Both norms have a relevant pres-
ence when evolved, which is a fairly positive outcome.
This conclusion directly addresses the concerns expressed
in [39], about the origin and maintenance of population
structure from an evolutionary perspective.

The Convention norm in particular, holds prevalence
values twice as high as the Informative norm, showing
to have the highest evolutionary likelihood. Exploring a
larger fraction of the parameter space, it is found that
its prevalence is consistently between 45% and 55%. The
lower evolutionary likelihood of the Informative norm
may be originated in the special focus it has on informa-
tive strategies, causing populations in non-informative
states to be more disconnected, which should prevent
them from evolutionarily adopt the norm. The general
emergence of the Convention norm is particularly posi-
tive, adding to its success on sustaining signaling emer-
gence. This comes to show that besides partner choice
being apt to evolve, it is also attainable that the partic-
ular structure evolving from it sustains signaling.

Signaling prevalence increases under the evolution of
partner choice behavior, in comparison to the outcome
obtained under a population with no norm, as it can be
seen in the main panel from Fig. 5. Even though this en-
hancement was lighter than the one obtained when link-
ing behavior defined by those same norms was fixed, it
was consistently observed throughout the explored pa-
rameter space. Signaling prevalence under population
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FIG. 4. Prevalence of each strategy, numbered from 0 to 15 (see strategy index in Model), under maximum partial conflict.
This is a representation of the normalized stationary distribution. Three different partner choice scenarios are presented: no
norm (δ = 0), Informative norm (δ = 0.25) and Convention norm (δ = 0.25). Strategies from groups I1 and I2 are represented
in blue with signaling systems (5 and 10) highlighted in darker blue. Strategies from group UI are represented in brown with
deceivers (1 and 14) in darker brown. See graph in Fig. 3 for a clearer picture of groups. Other parameters: Z = 50, β = 1,
a = b = 1, p = 0.5.

FIG. 5. Comparison between the signaling prevalence results
obtained under the initial model – norms are fixed – and the
extended model with possible coexistence of different partner
choice behavior – norms may evolve. The value obtained un-
der the no norm setting (δ = 0 in the initial model) is shown
in a dashed line as a term of comparison. The inset panel
shows the prevalence of norm usage over their independent
evolution. Parameters: δ = 0.25, Z = 50, β = 1, a = b = 1,
p = 0.5.

structure is therefore said to be mildly enhanced under
the co-evolution of the linking behavior creating struc-
ture itself. Alternative formulations of the signaling game
with negative payoff values could limit the evolutionary
cost of partner choice and potentially show an emergence
of signaling more robust to this co-evolution.

V. CONCLUSIONS

We have proposed a new model to assess the emergence
of signaling under conflict in time-evolving network struc-
tures. The stochasticity of populations admitted the rel-
evant evolution of signaling under all levels of partial con-

flict. Even in the scenario where individuals connect with
others indiscriminately, signaling ranged from a complete
dominance of the evolutionary dynamics under common
interests, to the emergence from a non-trivial interplay
with deceivers under maximum partial conflict.

We have analyzed different heuristics on partner choice
norms, defining individual behavior in regards to the ad-
justment of their societies. We show that signal-based
partner choice is capable of reverting the decrease of sig-
naling prevalence observed under higher conflict levels.
This reversion was as strong as the depth of the changes
from partner choice on the population structure. This
positive effect was explained under the evolutionary dy-
namics, and its underlying mechanism tested and shown
to be robust under average values of population size, in-
tensity of selection, and with states of the world simi-
larly present. Outcome-based partner choice was alter-
natively shown to have a comparable effect on the emer-
gence of signaling. By subjecting partner choice to se-
lection, it was shown that this behavior was likely to
develop, particularly under the case of the Convention
norm. This last feature adds that not only is population
structure likely to emerge, as it is attainable that the par-
ticular structure evolving will enhance signaling. Even
though the signaling enhancement enabled by signal-
based partner choice was mitigated by its co-evolution,
it still emerged consistently. Here, alternative formula-
tions of the signaling game could reveal new facets of
co-evolution.

We hope this work is a valuable contribution to the ex-
isting literature on signaling. Hitherto, a large part of it
has been dedicated to costly signaling as a mechanism
to overcome deceiving behavior under partial conflict.
We have deliberately tried to diversify this landscape by
bringing attention to other features of real populations,
such as finiteness and structure, and showing them to
have remarkably promising effects on the emergence of
signaling.
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The developed modeling framework provided the sig-
naling game and its unifying payoff framework as a novel
contribution, where the conflict level was used to gauge
continuously from the Lewis SG to the canonical SG
with partial conflict. Another modeling feature newly
proposed was partner choice, which was central to the
use of active linking and allowed us to explore adaptive
interaction networks under the complete non-truncated
16-strategy game. The extension of this model aiming
at co-evolving partner choice behavior was therefore also
novel.

This could be further extended to address the new
routes and questions opened by the present work. It
would be interesting to explore alternative forms of link-
ing behavior, possibly focused on the actions performed
by agents, the resemblance between them, or the forma-
tion of cliques. Each norm’s logical complexity [70, 71]
could be assessed formally, as this factor could play a
role in the norms’ success in promoting signaling [72]. If
the computational expenses are overcome, partner choice
could be additionally explored subjecting all its possible
combinations to natural selection at the same level [74],
or under a multi-level selection model [75]. These mod-
els could provide valuable insights about both the evolu-
tionary likelihood of this behavior and the co-emergence
of signaling. Separating strategic mutations from link-
ing behavior ones by providing each with its independent
probability under the co-evolutionary dynamics may al-
ternatively provide distinct emerging outcomes [76].

Two major analytic approximations were used under
our model: the small mutation limit [12, 77] and very fast

networks dynamics under active linking [52, 53]. Both
approximations could have their validity assessed using
agent-based numerical simulations to evaluate changes in
the outcome. As an example, this is done under the pris-
oner’s dilemma in [50] for µ = Z−2, and in [53] for linking
dynamics under a wide range of τa/τs. Even though re-
sults are shown to hold in both cases, it is not trivial that
the same should happen under signaling game dynamics.
The SML could be further extended including additional
configurations of interest apart from the monomorphic
states, to achieve more accurate results [51].

Together with [39], the present work shows that pop-
ulation structure is a theoretically viable and solid alter-
native to costly signaling theory. We recognize the gap
between these results and the experimental data. There-
fore, we urge for the need to connect data on signaling
from real complex systems from biological and social sci-
ences, with the theoretical results drawn here. This could
be done looking for structure in those systems and under-
standing how it can enhance signaling emergence based
on what is shown here, or alternatively using the theoret-
ical framework developed under this work to study the
impact of specific network dynamics.

ACKNOWLEDGMENTS

The author would like to thank Professor Francisco
C. Santos for all his support and motivation, and for
together with Professor Jorge M. Pacheco, and Profes-
sor Fernando P. Santos providing valuable suggestions
and corrections. Financial support from FCT-Portugal
is gratefully acknowledged.

[1] B. Skyrms, Signals (Oxford University Press, 2010)
Chap. 8: Learning in Lewis Signaling Games, p. 103–105.

[2] H. H. Clark, Using language (Cambridge University
Press, 1996).

[3] M. D. Hauser, The evolution of communication (MIT
press, 1996).

[4] D. K. Lewis, Convention: A Philosophical Study (Har-
vard University Press, 1969).

[5] J. von Neumann and O. Morgenstern, Theory of Games
and Economic Behavior (Princeton University Press,
1944).

[6] S. Huttegger, B. Skyrms, P. Tarrès, and E. O. Wagner,
Proceedings of the National Academy of Sciences 111,
10873–10880 (2014).

[7] P. D. Taylor and L. B. Jonker, Mathematical Biosciences
40, 145–156 (1978).

[8] J. Hofbauer, Journal of Mathematical Biology 23, 41–53
(1985).

[9] J. M. Smith and G. R. Price, Nature 246, 15–18 (1973).
[10] J. M. Smith, Evolution and the Theory of Games (Cam-

bridge University Press, 1982).
[11] A. Traulsen, M. A. Nowak, and J. M. Pacheco, Physical

Review E 74, 011909 (2006).
[12] D. Fudenberg and L. A. Imhof, Journal of Economic The-

ory 131, 251–262 (2006).

[13] A. J. Stewart and J. B. Plotkin, Proceedings of the Na-
tional Academy of Sciences 110, 15348–15353 (2013).

[14] A. J. Stewart and J. B. Plotkin, Proceedings of the Na-
tional Academy of Sciences 111, 17558–17563 (2014).

[15] S. M. Huttegger, Philosophy of science 74, 1–27 (2007).
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